
PENKO Engineering B.V.

Your Partner for Fully Engineered Factory Solutions

Manual:

SGM800 Supplement Check Weigher Controller

Table of Contents

1		Introduction3				
2		Indication of display4				
3		Explanation of front keys5				
4	(Configure and control				
	4.1	1	PENKO configuration software	6		
5		Para	ameters	8		
	5.1	1	Configuration parameters	8		
	5.2	2	Recipe parameters	.10		
	5.3	3	Live process values	.11		
6		Inpu	uts and outputs	.12		
	6.1	1	Inputs	.12		
	6.2	2	Outputs	.12		
	6.3	3	Analog output	.12		
7		Prog	gram basics	.13		
	7.1	1	Static check mode, Reject mode set to Time	.13		
	7.2	2	Static check mode, Reject mode set to Photocell	.13		
	7.3	3	Dynamic check mode, Reject mode set to Time	.14		
8		Defa	ault settings	.15		
9		Indu	ustrial protocols	.18		
	9.1	1	Modbus	.19		
	9.2	2	Profibus	.24		
	9.3	3	EtherNet IP	.27		
	a /	1	Profinet	21		

1 Introduction

This manual is applicable for the following Check Weigher devices:

- SGM820 Ethernet CHK
- SGM830 CHK
- SGM840 Profibus CHK
- SGM850 Serial CHK
- SGM860 Profinet CHK

To configure and control the Check Weigher, the following options are available:

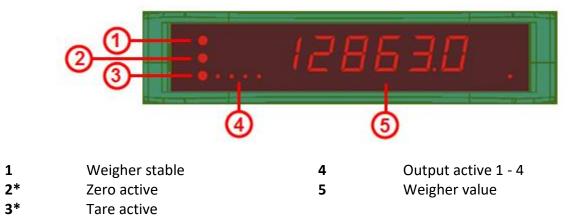
Full control:

- PENKO Pi Mach II software
- PENKO PDI Client software
- Modbus protocol
- Profibus protocol
- EtherNet/IP protocol
- ASCII protocol
- Profinet protocol

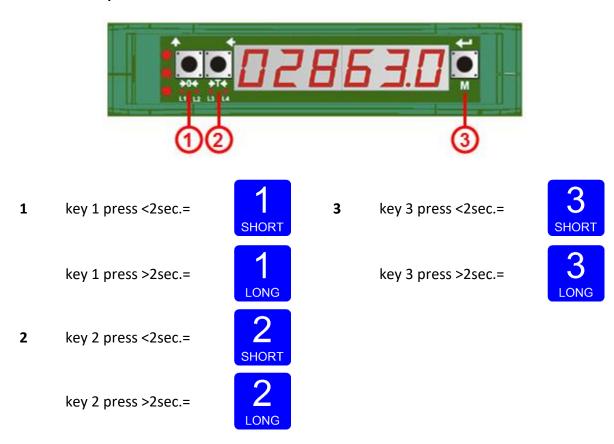
Basic control:

- Fins protocol*
- PENKO TP protocol*

Note:


This manual does not describe the basic functionality of the device. Consult the device manual for this.

^{*} Register functions not available


2 Indication of display

The SGM with closed cover:

^{*} When the check weigher program is active, LED 2 and 3 are blinking

The SGM with open cover:

Function of these keys are described on the next page

3 Explanation of front keys

All keys have different functions depending on weighing, menu or program mode.

Pressing key 1 "short".

In Weighing mode: create a new zero level

In Menu mode: increase value by 1 or move up in menu

In running mode: disabled

Pressing key 1 "long".

In Weighing mode: reset zero level to the original zero level In Menu mode: decrease value by 1 or move down in menu

In running mode: disabled

Pressing key 2 "short".

In Weighing mode: set/reset tare and reset preset tare

In Menu mode: go into sub-menu or move cursor 1 position to the left

In running mode: disabled

Pressing key 2 "long".

In Weighing mode: set preset tare

In Menu mode: move cursor 1 position to the right

In running mode: disabled

Pressing key 3 "short".

In Weighing mode: enter menu

In Menu mode: escape move back in menu without saving changes

In running mode: disabled

Pressing key 3 "long".

In Weighing mode: enter configuration menu

In Menu mode: Confirm made changes

In running mode: disabled

Menu will jump back one level every 30 seconds of inactivity

4 Configure and control

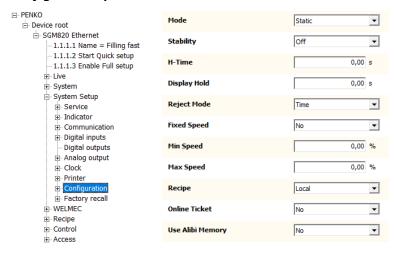
To configure and control the Check Weigher, the following options are available:

- PENKO configuration software
- Industrial protocols

4.1 PENKO configuration software

PENKO Pi Mach II and PENKO PDI Client can be downloaded from www.penko.com

USB driver and user manual are included in the download

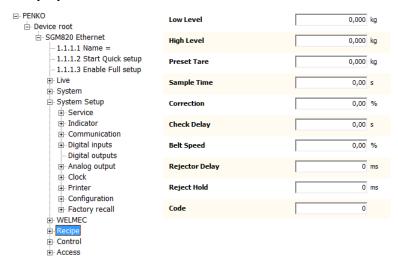

Pi Mach II supports USB and Ethernet connection. PDI Client is USB only.

Consult the manuals on how to install and connect to the device.

In the tree structure of the device, the configuration parameters are found at:

PENKO - Device root - SGM800 - System Setup - Configuration

Configuration parameters


The parameters are explained in chapters 5

In the tree structure of the device, the recipe parameters are found at:

PENKO - Device root - SGM800 - Recipe

Recipe parameters

The parameters are explained in chapters 5

5 Parameters

These parameters correspond with the parameters in the tree structure of the device configuration. When using the industrial protocol register functions, each parameter can be reached using its number.

Some parameters can be reached directly using ASCII, TP protocol, Modbus RTU, Modbus TCP, Fins, Profibus, Profinet or EtherNet/IP.

Note: when the device is rebooted or the configuration is manually changed, all configuration parameters are changed back to the value that were last set manually in the configuration.

5.1 Configuration parameters

J.1	1 Comiguration parameters				
No.	Name	Description			
1	Check mode	 Select if the check weigher is used for dynamic or static weighing. Dynamic => the product will move during weighing (belt is running). Static => the product will be stopped during weighing (belt is stopped when check input is high and restarted when check is done). 			
2	Stability	 Select the type of check delay. In static check mode the belt will stop during the check delay. Off => check starts directly Stable => check starts after Stable H-Time => check starts after H-time H-Time+Stable => check starts after H-time and then Stable H-Time/Stable => check starts after H-time or Stable Stable+H-Time => check starts after Stable and then H-Time 			
3	H-Time	Time to wait for stable weight measurement. Δ Not used if Stability parameter is set to Off or Stable			
4	Display hold	The time to freeze the checked value on the display after the check is done. When a check starts before the display hold time is elapsed, the hold time will be cut off. • A Not used if Stability parameter is set to Off or Stable			

5	Rejector mode	Select when the packages should be rejected.	
		• Time => reject after a set time (settings are in recipe)	
		 Photocell => reject when passing the photocell (input 3) 	
6	Fixed speed	Select if the belt speed is fixed or variable.	
		No => belt speed is variable between set minimum and	
		maximum speed and is controlled by the analog output	
		 Yes => belt speed is fixed (setting is in recipe) 	
7	Min. speed	Enter the minimum variable belt speed.	
8	Max. speed	Enter the maximum variable belt speed.	
9	Recipe	Select the used recipe.	
		 Local => use the recipe selected on the device 	
		 Remote => use the recipe from a remote device (e.g. PLC) 	
10	Online Highest	•	
10	Online ticket	Select if a printer ticket must be printed for each checked product.	
11	Use alibi	Select if a result must be written to the internal alibi	
	memory	memory.	

5.2 Recipe parameters

These parameters correspond with the parameters in the tree structure of the device Recipe. When using the industrial protocol register functions, each parameter can be reached using its number.

Some parameters can be reached directly using ASCII, TP protocol, Modbus RTU, Modbus TCP, Fins, Profibus or EtherNet/IP.

Note: when the device is rebooted or the recipe is manually changed, all recipe parameters are changed back to the value that were last set manually in the recipe.

No.	Name	Description
1	Low level	If the checked value is below this value, the package will be rejected.
2	High level	If the checked value is above this value, the package will be rejected.
3	Preset tare	The preset tare will be subtracted from the checked value.
4	Sample time	Duration of the package weight measurement.
5	Correction	Correction factor to correct the fault caused by the dynamic characteristics of the machine. Correction can be set from 0% to 200%. 100% means no correction is used.
6	Check delay	Enter the time between detecting a product and start checking or stopping the belt.
7	Belt speed	The speed of the transport belt in %
8	Rejector delay	Delay time to activate the rejector after detecting a faulty package.
9	Reject hold	Time to hold the rejector output active for a certain time after activating.
10	Batch code	Enter a Batch code for printing reports.

5.3 Live process values

When using the industrial protocol register functions, each parameter can be read using its number.

Example: to read the value of low level, Use the function code 701 and value 1.

No.	Name	Description
1	Low level	Get the low level value.
2	High level	Get the high level value.
3	Subtotal std.dev	Get the standard deviation of the subtotal.
4	Subtotal average	Get the average value of the subtotal.
5	Subtotal (weight) ok	Get the weight of the accepted products of the subtotal.
6	Subtotal count ok	Get the number of accepted product of the subtotal.
7	Subtotal count low	Get the number of too low product of the subtotal.
8	Subtotal count high	Get the number of too high product of the subtotal.
9	Subtotal count total	Get the number of all product of the subtotal.
10	Total std.dev	Get the standard deviation of the total batch.
11	Total average	Get the average value of the total batch.
12	total (weight) ok	Get the weight of the accepted products of the total batch.
13	Total count ok	Get the number of accepted product of the total batch.
14	Total count low	Get the number of too low product of the total batch.
15	Total count high	Get the number of too high product of the total batch.
16	total count total	Get the number of all product of the total batch.
17	Alibi no.	Get the number of the Alibi record.

6 Inputs and outputs

The following inputs and outputs are used.

6.1 Inputs

Input	Name	Description
1	Start/Stop	Input must be high to set the program in run mode.
2	Start Sampling	Input to start sampling the package.
3	Reject Sensor	Input to detect the package on the reject position. Input must be placed diagonal over the belt.

Note: when using Ethernet IP, the 3 input functions can also be controlled using the Instance: 0x0378 (888) (Control out)

6.2 Outputs

Output	Name	Description
1	Rejector	Output to enable the rejector after the package is detected on the reject position.
2	Sampling Busy	Output to enable the busy output. Output is high from detecting the package until sampling is done.
3	Transport Belts	Output to enable the transport belts. In dynamic mode the output is always on if no alarm is generated. In static mode the output is off during sampling and during an indicator alarm.
4	Alarm	Output to enable the indicator alarm. This output is used to activate the indicator alarm. This alarm can be reset by switching off input 1.

6.3 Analog output

Output	Name	Description	
Analog	Belt Speed	Belt Speed will be available from 0.00% to 100.00%.	
out			

7 Program basics

This chapter describes a few basics of the Check Weigher program which can be used when starting the program for the first time.

7.1 Static check mode, Reject mode set to Time

With input 1 you can Start (input high) and Stop (input low) the program. The Transport Belt (output 3) will start. With a pulse on Start Sampling (input 2) the checking will start. During checking the Transport Belt (output 3) will stop and Sample Busy (output 2) is on.

When the checking is complete and the weight is ok, the Transport belt (output 3) will start again, Sample Busy (output 2) is off. With a pulse on Start Sampling (input 2) the checking will start again.

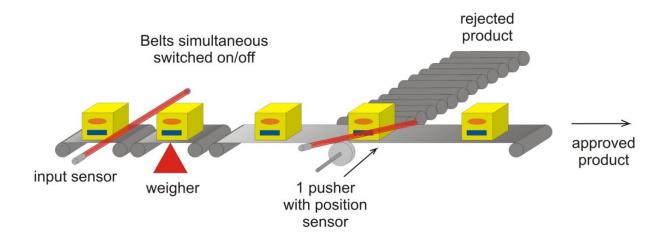
If the weight is below Low Level or above High Level the Transport belt (output3) will start again. After the Reject Delay time, the Rejector (output 1) will turn on, and will remain on for the duration of the Reject Hold time. With a pulse on Start Sampling (input 2) the checking will start again.

7.2 Static check mode, Reject mode set to Photocell

With input 1 you can Start (input high) and Stop (input low) the program. The Transport Belt (output 3) will start. With a pulse on Start Sampling (input 2) the checking will start. During checking the Transport Belt (output 3) will stop and Sample Busy (output 2) is on.

When the checking is complete and the weight is ok, the Transport belt (output 3) will start again, Sample Busy (output 2) is off. With a pulse on Start Sampling (input 2) the checking will start again.

If the weight is below Low Level or above High Level the Transport belt (output3) will start again. When the photocell (connected to input 3) has detected the product, the Rejector (output 1) will turn on, and will remain on as long as input 3 (photocell) in on. With a pulse on Start Sampling (input 2) the checking will start again.



7.3 Dynamic check mode, Reject mode set to Time

With input 1 you can Start (input high) and Stop (input low) the program. The Transport Belt (output 3) will start. With a pulse on Start Sampling (input 2) the checking will start. During the checking the Sample Busy (output 2) is on.

When the checking is complete and the weight is ok. The Transport belt (output 3) will start again, Sample Busy (output 2) is off. With a pulse on Start Sampling (input 2) the checking will start again.

If the weight is below Low Level or above High Level the Transport belt (output3) will start again. After the Reject Delay time, the Rejector (output 1) will turn on, and will remain on for the duration of the Reject Hold time. With a pulse on Start Sampling (input 2) the checking will start again.

8 Default settings

Configuration

Configuration	Static check mode, Reject mode set to Time	Static check mode, Reject mode set to Photocell	Dynamic check mode, Reject mode set to Time
Check Mode	Static	Static	Dynamic
Stability	Stable + H-Time	Stable + H-Time	Stable + H-Time
H-Time	1.00 sec	1.00 sec	1.00 sec
Display Hold (Disabled if stability parameter is set to off or stable)	1.00 sec	1.00 sec	1.00 sec
Rejector Mode	Time	Photocell	Time
Fixed Speed	Yes	Yes	Yes
Min. Speed	0.00%	0.00%	0.00%
Max. Speed	100.00%	100.00%	100.00%
Recipe	Local	Local	Local
Online Ticket	No	No	No
Use Alibi Memory	No	No	No

DAC

DAC setup	Setting
Indicator	Speed
Min	0.00%
Max	100.00%
Mode	4 – 20 mA

Weigher

Weigher	Setting
Unit Label	Kg
Step	1
Decimal point	0.00
Operation Mode	Industrial
Max Load	1000.00

Stable

Stable Condition	Setting
Range	0.10 kg
Time	0.50 sec

Filter

Filter Digital	Setting
Digital Filter	Dynamic App.
Cutoff Frequency	1.0 Hz
Frequency	10 Hz

9 Industrial protocols

The protocols Modbus, Profibus, EtherNet/IP and ASCII have a function set called register functions. These functions allow the user to configure and control the device.

Protocol descriptions can be downloaded from www.penko.com

Consult these on how to connect the device and use the register functions.

	SGM800	SGM810	SGM820	SGM840	SGM850	SGM860
Modbus TCP			✓			
Modbus SERIAL					✓	
Profibus				✓		
EtherNet/IP			✓			
ASCII TCP			✓			
ASCII SERIAL					✓	
Profinet IO						✓

Note: the FINS and PENKO TP protocol do not support register functions, only basic read and write operations for markers and registers.

9.1 Modbus

Below you will find a list with the data offset to read and write the data. When writing data, don't exceed the length of the data. This will cause a negative effect in the program.

	Name	Access Type	Trigger	READ Offset	Length	Error Handling	WRITE Offset	Length
0	Indicators	Read Input Registers (Function Code 04)	Cyclic, t#100ms	16#0064	50	Keep last value		
1	Inputs	Read Discrete Inputs (Function Code 02)	Cyclic, t#100ms	16#0000	3	Keep last value		
2	Outputs	Read Discrete Inputs (Function Code 02)	Cyclic, t#100ms	16#00C8	4	Keep last value		
3	Markers read	Read Coils (Function Code 01)	Cyclic, t#100ms	16#0190	32	Keep last value		
4	Markers write	Write Multiple Coils (Function Code 15)	Cyclic, t#100ms				16#01B0	8
5	Read Ext. Registers	Read Input Registers (Function Code 04)	Cyclic, t#100ms	16#03E8	20	Keep last value		
6	Write Ext. Registers	Write Multiple Registers (Function Code 16)	Cyclic, t#100ms				16#0410	20
7	Indicator status	Read Discrete Inputs (Function Code 02)	Cyclic, t#100ms	16#0440	15	Keep last value		
8	Control	Write Multiple Coils (Function Code 15)	Cyclic, t#100ms				16#03E8	6

In the lists below the addresses are appointed without the offset. If you use the above list, you can use the lists below as structures.

0) Read Indicators (dint)

Indi	cator	Addres	S	
		Code	Address	Combined
1	Weight	3x	101	300101
2	Fast gross weight	3x	103	300103
3	Fast net weight	3x	105	300105
4	Display fast gross	3x	107	300107
5	Display fast net	3x	109	300109
6	Tare	3x	111	300111
7	Peak	3x	113	300113
8	Valley	3x	115	300115
9	Hold	3x	117	300117
10	Weight x10	3x	119	300119
11	Fast gross weight x10	3x	121	300121
12	Fast net weight x10	3x	123	300123
13	Display fast gross x10	3x	125	300125
14	Display fast net x10	3x	127	300127
15	Tare x10	3x	129	300129
16	Peak x10	3x	131	300131
17	Valley x10	3x	133	300133
18	Hold x10	3x	135	300135
19	Signal	3x	137	300137
20	Zero	3x	139	300139
21	Checked value gross*10	3x	141	300141
22	Checked value net*10	3x	143	300143

23	Checked value gross	3x	145	300145
24	SGM820 actual display value	3x	147	300147
25	Checked value net	3x	149	300149

1) Read Inputs (3 bits)

Inp	uts	Address		
		Code	Address	Combined
1	Start/stop program	1x	1	100001
2	Start sampling	1x	2	100002
3	Rejector sensor	1x	3	100003

2) Read Outputs (4 bits)

Out	puts	Address	Address		
		Code	Address	Combined	
1	Rejector	1x	201	100201	
2	Sampling busy	1x	202	100202	
3	Transport belt	1x	203	100203	
4	Alarm	1x	204	100204	

3) Read Markers (32 bits)

Mar	kers	Addres	S	
		Code	Address	Combined
1	Check low	0x	401	000401
2	Check high	0x	402	000402
3	Check OK	0x	403	000403
4	Check ready	0x	404	000404
5	Sec alive bit	0x	405	000405
6	Sample busy	0x	406	000406
7	Check busy	0x	407	000407
8	Reset color	0x	408	000408
9	Result handled	0x	409	000409
10	Check done	0x	410	000410
11	Display hold	0x	411	000411
12	SGM820 online	0x	412	000412
13	Not used	0x	413	000413
14	Stop belts	0x	414	000414
15	Reset sub totals	0x	415	000415
16	Reset totals	0x	416	000416

17	IND error	0x	417	000417
18	Not used	0x	418	000418
19	Not used	0x	419	000419
20	Not used	0x	420	000420
21	Not used	0x	421	000421
22	Not used	0x	422	000422
23	Not used	0x	423	000423
24	Not used	0x	424	000424
25	Not used	0x	425	000425
26	Not used	0x	426	000426
27	Not used	0x	427	000427
28	Not used	0x	428	000428
29	Not used	0x	429	000429
30	Not used	0x	430	000430
31	Not used	0x	431	000431
32	Not used	0x	432	000432

4) Write Markers (8 bits)

Ma	rkers	Address		
		Code	Address	Combined
1	Start / Stop	0x	433	000433
2	Start sampling	0x	434	000434
3	Rejector sensor	0x	435	000435
4	Not used	0x	436	000436
5	Not used	0x	437	000437
6	Not used	0x	438	000438
7	Not used	0x	439	000439
8	Not used	0x	440	000440

5) Read Ext. Registers (dint)

Ext.	Registers	Address	S	
		Code	Address	Combined
1	Net Checked value	3x	1001	301001
2	Net value	3x	1003	301003
3	Internal checked value	3x	1005	301005
4	DAC value	3x	1007	301007
5	Registration	3x	1009	301009
6	Custom code	3x	1011	301011
7	Not used	3x	1013	301013
8	Not used	3x	1015	301015
9	Not used	3x	1017	301017
10	Not used	3x	1019	301019

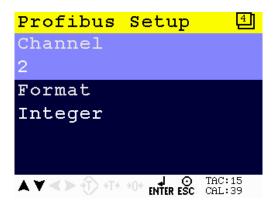
6) Write Ext. Registers (dint)

Ext.	Registers	Address		
		Code	Address	Combined
21	Low level	4x	1041	401041
22	High level	4x	1043	401043
23	Preset tare	4x	1045	401045
24	Sample time	4x	1047	401047
25	Correction	4x	1049	401049
26	Check delay	4x	1041	401051
27	Belt speed	4x	1043	401053
28	Rejector delay	4x	1045	401055
29	Reject hold	4x	1047	401057
30	Code	4x	1049	401059

7) Read Indicator status (16 bits)

Ind	Indicator status		Address		
		Code	Address	Combined	
1	Hardware overload	1x	1089	101089	
2	Maximum load	1x	1090	101090	
3	Stable weight	1x	1091	101091	
4	Stable range	1x	1092	101092	
5	Zero set	1x	1093	101093	
6	Center of zero	1x	1094	101094	
7	Zero range	1x	1095	101095	

8	Zero track range	1x	1096	101096
9	Tare active	1x	1097	101097
10	Preset tare active	1x	1098	101098
11	New sample available	1x	1099	101099
12	Calibration invalid	1x	1100	101100
13	Calibration enabled	1x	1101	101101
14	Industrial mode	1x	1102	101102
15	Invalid weight	1x	1103	101103
16	Reserved	1x	1104	101104


8) Write Indicator control (6 bits)

Ind	icator control	Address		
		Code	Address	Combined
1	Zero reset	0x	1001	001001
2	Zero set	0x	1002	001002
3	Tare off	0x	1003	001003
4	Tare on	0x	1004	001004
5	Toggle tare	0x	1005	001005
6	Preset tare	0x	1006	001006

9.2 Profibus

First set up the Channel and Format in the Profibus Setup. Press Enter for 3 seconds. Press on System Setup and Port Setup, then press on Profibus Setup. Set up the Channel, Format and press "ESC". Keep pressing on the "ESC" button to return to the live weight screen.

GSD file data structure

Download the SGM840 controller GSD file (PSG80E28.GSD) from the Penko website www.penko.com/Support/Software/.

Read data structure from the SGM840:

Data type	Description	
Double word 32 bit signed integer/float	Read weight value	
Word 16 bit	Read indicator status	Bit 0 = Hardware overload
		Bit 1 = Maximum overload
		Bit 2 = Stable weight
		Bit 3 = Stable range
		Bit 4 = Zero set
		Bit 5 = Center of zero
		Bit 6 = Zero range
		Bit 7 = Zero track range
		Bit 8 = Tare active
		Bit 9 = Preset tare active
		Bit 10 = New sample available
		Bit 11 = Calibration invalid
		Bit 12 = Calibration enabled
		Bit 13 = Industrial mode
		Bit 14 = Invalid weight
		Bit 15 = Reserved

Byte 8 bit	Read command	Bit 0 = Zero reset
		Bit 1 = Zero set
		Bit 2 = Tare off
		Bit 3 = Tare on
		Bit 4 = Reserved
		Bit 5 = Freeze Weight value
		Bit 6 = Indicator channel 2^0
		Bit 7 = Indicator channel 2^1
Byte 8 bit	Read weight select register	Not used
Word 16 bit	Read inputs	Bit 0 = Input 1 Start/stop
		Bit 1 = Input 2 Start sampling
		Bit 2 = Input 3 Rejector sensor
		Bit 3 - 15 = Input 4 – 16 Not used
Word 16 bit	Read outputs	Bit 0 = Output 1 Rejector
	·	Bit 1 = Output 2 Sampling busy
		Bit 2 = Output 3 Transport belts
		Bit 3 = Output 4 Alarm
		Bit 4 – 15 = Output 5 – 16 Not used
Word 16 bit	Read markers 401 - 416	Bit 0 = Check low
		Bit 1 = Check high
		Bit 2 = Check OK
		Bit 3 = Check Ready
		Bit 4 = Sec alive bit
		Bit 5 = Sample busy
		Bit 6 = Check busy
		Bit 7 = Reset color
		Bit 8 = Result handled
		Bit 9 = Check done
		Bit 10 = Display hold
		Bit 11 = SGM840 online
		Bit 12 = Not used
		Bit 13 = Stop belts
		Bit 14 = Reset sub totals
		Bit 15 = Reset totals
Word 16 bit	Read markers 417 - 432	Bit 0 = IND error
		Bit 1 -15 = Not used
Double word 32 bit	Read register 1	Net checked value (only active when
signed integer	Ü	program is started)
Double word 32 bit	Read register 2	Net value
signed integer	-	

Double word 32 bit	Read register 3	Internal check value
signed integer		
Double word 32 bit	Read register 4	DAC value
signed integer		

Write data structure to the SGM840:

Data type	Description	
Byte 8 bit	Write command	Bit 0 = Zero reset
		Bit 1 = Zero set
		Bit 2 = Tare off
		Bit 3 = Tare on
		Bit 4 = Reserved
		Bit 5 = Freeze Weight value
		Bit 6 = Indicator channel 2^0
		Bit 7 = Indicator channel 2^1
Byte 8 bit	Write weight select	Not used
	register	
Word 16 bit	Write markers 969 - 984	Bit 0 = Start / stop program
		Bit 1 = Start sampling
		Bit 2 = Reject sensor
		Bit 3 – 15 = Not used
Word 16 bit	Write markers 985 - 1000	Bit 0 – 15 = Not used
Double word 32 bit	Write register 85	Low level value from Profibus
signed integer		
Double word 32 bit	Write register 86	High level value from Profibus
signed integer		
Double word 32 bit	Write register 87	Preset tare value from Profibus
signed integer		
Double word 32 bit	Write register 88	Sample time value from Profibus
signed integer		

9.3 EtherNet IP

EDS data structure

Download the SGM820 EDS file from the Penko website www.penko.com/Support/Software/.

Control in (884)

Read data structure from the SGM820: In the example the instance 0x0374 (884) Control in is used.

Access	Name	Data type	Description
Get	Control In	STRUCT OF	·
	Weigher	DINT WEIGHER	Display rate weigher data
		DINT GROSS	Fast Gross weight
		DINT NET	Fast Net weight
		DINT TARE	Active Tare weight
		DINT	Display rate weigher data x10
		WEIGHERx10	Fast Gross weight x10
		DINT GROSSx10	Fast Net weight x10
		DINT NETx10	Active Tare weight x10
		DINT TAREx10	Format bits, see Weigher-Format word
		WORD FORMAT	Status bits, see Weigher-Status word
		WORD STATUS	
	Indicator	ARRAY[20] OF	Read indicators, default start read at 1
		STRUCT OF	
		INDICATOR	
	Register	ARRAY OF	Registers [10], SGM820 controller :
	read	DINT[10]	Register 1 = Net checked value
			Register 2 = Net value
			Register 3 = Internal checked value
			Register 4 = DAC value
			Register 5 = Registration
			Register 6 = Alibi Nr
			Register 7 = Code
			Register 8 = Not used
			Register 9 = Not used
			Register 10 = Not used
	Markers Input	BYTE ARRAY[4]	Markers 4x8=32 default read at 401-432
			Bit 0 = Check low
			Bit 1 = Check high
			Bit 2 = Check OK
			Bit 3 = Check ready
			Bit 4 = Sec alive bit

Bit 5 = Sample busy Bit 6 = Check busy Bit 7 = Reset color Bit 8 = Result handled Bit 9 = Check done Bit 10 = Display hold Bit 11 = SGM820 online Bit 12 = Not used Bit 13 = Stop belts Bit 14 = Reset sub totals Bit 15 = Reset totals Bit 16 = IND error Bit 17 = Not used Bit 18 = Not used Bit 19 = Not used Bit 20 = Not used Bit 21 = Not used Bit 22 = Not used Bit 23 = Not used Bit 24 = Not used Bit 25 = Not used Bit 26 = Not used Bit 27 = Not used Bit 28 = Not used Bit 29 = Not used Bit 30 = Not used Bit 31 = Not used

Control out (888)

Write data structure to the SGM820: In the example the instance 0x0378 (888) Control out is used.

Access	Name	Data type	Description
Set	Control Out	STRUCT OF	
	Weigher Control	ARRAY OF	Weigher control word,
		BYTE[2]	see also Weigher-Control word
	Reserved Control	ARRAY Of BYTE[2]	Set to 0x0000
	Register	ARRAY OF	Registers [10], SGM820 indicator :
	write	DINT[10]	Register 11 = Low level
			Register 12 = High level
			Register 13 = Preset tare
			Register 14 = Sample time
			Register 15-20 = Not used
	Markers Output	BYTE ARRAY[4]	Markers 4x8=32 default write at 433-464
			Bit 0 = Start/stop program
			Bit 1 = Start sampling
			Bit 2 = Reject sensor
			Bit 3 - 31 = Not used

Weigher-Status word

Bit #	Called	Definition
0	OVERLOAD	Hardware overload/underload detected on loadcell
1	MAXLOAD	Overload detected on loadcell
2	STABLE	Weigher signal is stable
3	STABLE RANGE	Weigher signal is in stable range
4	ZERO SET	Weigher zero is corrected
5	ZERO CENTER	Weigher in center of zero range
6	ZERO RANGE	Weigher is in zero range, zero is possible
7	ZERO TRACK	Weigher signal is in zero tracking range, zero tracking is possible
8	TARE	Weigher tare is active
9	PTARE	Weigher preset tare is active
10	SAMPLE	Used by internal process handling
11	BAD CAL	Calibration is bad, invalid, not available
12	CAL ENABLED	Calibration is enabled, used by internal process handling
13	INDUSTRIAL	If set weigher runs in industrial mode, if reset weigher runs certified operation mode
14	NOT LEVEL	Weigher system in blocking, warming up or scale is not level
15	RESERVED	Reserved mode always 0

Weigher-Control word

Bit #	Called	Definition
0	ZERO_RESET*	Reset the actual zero weight, condition only possible in noncertified
		mode
1	ZERO_SET*	Activate new zero weight, condition stable signal
2	TARE_OFF*	Switch actual tare weight off
3	TARE_ON*	Activate new tare weight, condition stable signal
4	TARE_TOGGLE*	Toggle the Tare weight on condition stable signal, off condition none
5-16	RESERVED	Reserved bits always 0

^{*}Remark: action on rising edge of bit

Weigher-Format word

Bit number	Description
#15	Signed/unsigned
	0 = Unsigned
	1 = Signed
#14	Zero suppressing
	0 = Nonzero suppressing
	1 = Zero suppressing
#11 - #8	Display step size
	0000 = Step 1
	0001 = Step 2
	0010 = Step 5
	0011 = Step 10
	0100 = Step 20
	0101 = Step 50
	0110 = Step 100
	0111 = Step 200
	1000 = Step 500
	1001 = Step 1000
	1010 = Step 2000
	1011 = Step 5000
#2 - #0	Decimal point position
	000 = 000000
	001 = 00000.0
	010 = 0000.00
	011 = 000.000
	100 = 00.0000
	101 = 0.00000

9.4 Profinet GSDML data structure

Download the SGM860 GSDML file from the Penko website www.penko.com/Support/Software/.

Module	Data type	Provided data (channels)
Weigher Input Module	Cyclic input d	
Treigner input module	DInt	Net
	DInt	Gross
	DInt	Tare
	DInt	Preset Tare
	Byte	Status
	,	0 = Weight is valid
		1 = Stable weight
		2 = Net weight
		3 = Center of zero
		4 = Zero is set
		5 = Floating point
		6 = Command is ready
		7 = Command is in execution mode
	Byte	Decimal point position in non floating point mode
	Byte	Range, active multiple range/multi interval, 0 is
		none. i.e. 1 = e1, 2 = e2, etc
Remote Command Module	Cyclic input d	
	DInt	Result data
	Byte	Command Result Code
	Bool	Status
		0 = Weight is valid
		1 = Stable weight
		2 = Net weight
		3 = Center of zero
		4 = Zero is set
		5 = Floating point
		6 = Command is ready
	Cuelle euteur	7 = Command is in execution mode
	Cyclic output	
	DWord DWord	Command
	Dint	Parameter
	טווונ	Exchange

Inputs Outputs Markers	Cyclic input of	lata
Module	DWord	Read inputs 1 - 3:
		Bit 0 = Start/stop program
		Bit 1 = Start sampling
		Bit 2 = Rejector sensor
		Bit 3 – 32 = Not used
	DWord	Read outputs 1 - 4:
		Bit 0 = Rejector
		Bit 1 = Sampling busy
		Bit 2 = Transport belts
		Bit 3 = Alarm
		Bit 4 – 32 = Not used
	DWord	Read markers 401 – 432:
		Bit 0 = Check low
		Bit 1 = Check high
		Bit 2 = Check OK
		Bit 3 = Check ready
		Bit 4 = Sec alive bit
		Bit 5 = Sample busy
		Bit 6 = Check busy
		Bit 7 = Reset color
		Bit 8 = Result handled
		Bit 9 = Check done
		Bit 10 = Display hold
		Bit 11 = SGM860 online
		Bit 12 = Not used
		Bit 13 = Stop belts
		Bit 14 = Reset sub totals
		Bit 15 = Reset totals
		Bit 16 = IND error
		Bit 17 = Not used
		Bit 18 = Not used
		Bit 19 = Not used
		Bit 20 = Not used
		Bit 21 = Not used
		Bit 22 = Not used
		Bit 23 = Not used
		Bit 24 = Not used
		Bit 25 = Not used
		Bit 26 = Not used
		Bit 27 = Not used
		Bit 28 = Not used

	I		
		Bit 29 = Not used	
		Bit 30 = Not used	
		Bit 31 = Not used	
	Cyclic output	data	
	DWord	Write markers 969 – 1000:	
		Bit 0 = Start/stop program	
		Bit 1 = Start sampling	
		Bit 2 = Rejector sensor	
		Bit 3 - 31 = Not used	
Diagnostics Module	Cyclic input d	yclic input data	
	DInt	Slave sequence counter, integrated Profinet ASIC	
	DInt	Master sequence counter, integrated Main CPU	

Recipe read and write

The recipe values can be read or written using the Cyclic output data parameters.

Cyclic output data

DWord	Command
DWord	Parameter
DInt	Exchange

The result data can be read using the Cyclic input data.

Cyclic input data			
DInt	Result data		
Byte	Command Result Code		

Read recipe

Rec	ipe	Cyclic outp	ut data		Cyclic input data	
Nr	Description	Command	Parameter	Exchange	Result data	Command result code
1	Low level	10	0	Not used	Low level value	See list below
2	High level	10	1	Not used	High level value	See list below
3	Preset tare	10	2	Not used	Preset tare value	See list below
4	Sample time	10	3	Not used	Sample time value	See list below
5	Correction	10	4	Not used	Correction value	See list below
6	Check delay	10	5	Not used	Check delay value	See list below
7	Belt speed	10	6	Not used	Belt speed value	See list below
8	Rejector delay	10	7	Not used	Rejector delay value	See list below
9	Reject hold	10	8	Not used	Reject hold value	See list below
10	Code	10	9	Not used	Code value	See list below

Write recipe

Recipe Cyclic output data		Cyclic input data				
Nr	Description	Command	Parameter	Exchange	Result data	Command
						result code
1	Low level	11	0	Low level value	Low level value	See list below
2	High level	11	1	High level value	High level value	See list below
3	Preset tare	11	2	Preset tare value	Preset tare value	See list below
4	Sample time	11	3	Sample time value	Sample time value	See list below
5	Correction	11	4	Correction value	Correction value	See list below
6	Check delay	11	5	Check delay value	Check delay value	See list below
7	Belt speed	11	6	Belt speed value	Belt speed value	See list below
8	Rejector delay	11	7	Rejector delay value	Rejector delay value	See list below
9	Reject hold	11	8	Reject hold value	Reject hold value	See list below
10	Code	11	9	Code value	Code value	See list below

Register read

The register values can be read using the Cyclic output data parameters.

Cyclic output data

DWord	Command
DWord	Parameter
DInt	Exchange

The result data can be read using the Cyclic input data.

Cyclic input data			
DInt	Result data		
Byte	Command Result Code		

Read registers

Rec	ipe	Cyclic outp	ut data		Cyclic input data	
Nr	Description	Command	Parameter	Exchange	Result data	Command result code
1	Net checked	5	0	Not used	Net checked value	See list below
	value					
2	Net value	5	1	Not used	Net value	See list below
3	Internal	5	2	Not used	Internal checked	See list below
	checked value				value *10	
	*10					
4	DAC value	5	3	Not used	DAC value	See list below
5	Registration	5	4	Not used	Registration	See list below
6	Alibi number	5	5	Not used	Alibi number	See list below
7	Custom code	5	6	Not used	Custom code	See list below

Command result codes

When you try to read or write a recipe value, you will receive a Command result

ID	Code	Description	
0	RPC_SUCCES	Command executed success	
1	RPC_EXECUTING	Command is executing	
2	RPC_UNKNOWN_COMMAND	Unknown Penko Profinet command	
3	RPC_UNKNOWN_FUNCTION	Unknown function	
4	RPC_NOTIDLE	Busy executing a command	
5	RPC_FAILED	Command executing failed	
6	RPC_ERROR	Command error	
7	RPC_NOT_ALLOWED	Command executing not allowed	
8-127	RESERVED	Reserved error codes	
128	RPC_PARAMETER_ERROR	Invalid parameter set	
129	RPC_NOTSTABLE	Weight not stable	
130	RPC_NEGATIVE	Weight negative	
131	RPC_NO_TARE	Tare not set	
132	RPC_OUTOFRANGE	Weight out of range	
134	RPC_NOT_STABLE	Weigher not stable	
135	RPC_ABOVE_MAXLOAD	Weight is above maxload	
136	RPC_BELOW_ZERO	Weigher below zero	
137	RPC_NOT_IN_ZERO_RANGE	Weigher not in zero range	
138	RPC_ARITMIC_OVERFLOW	Aritmic overflow	
139	RPC_ADC_OVERFLOW	Overload by ADC conversion	
140	RPC_ADC_UNDERFLOW	Underload by ADC conversion	
141	RPC_GAIN_NEGATIVE	Weight should increase and not decrease	
142	RPC_GAIN_OVERFLOW	Weight to low, value between zero and end weight required	
143	RPC_ACCESSDENIED	Command executing denied first enter TAC or CAL code	

About PENKO

At PENKO Engineering we specialize in weighing. Weighing is inherently chemically correct, independent of consistency, type or temperature of the raw material. This means that weighing any kind of material guaranties consistency and thus, it is essential to sustainable revenue generation in any industry. As a well-established and proven solution provider, we strive for the ultimate satisfaction of custom design and/or standard applications, increasing your efficiencies and saving you time, saving you money.

Whether we are weighing raw materials, components in batching, ingredients for mixing or dosing processes, - or weighing of static containers and silos, or - in-motion weighing of railway wagons or trucks, by whatever means required during a process, we are essentially forming vital linkages between processes and businesses, anywhere at any time. We design, develop and manufacture state of the art technologically advanced systems in accordance with your strategy and vision. From the initial design brief, we take a fresh approach and a holistic view of every project, managing, supporting and/or implementing your system every step of the way. Curious to know how we do it? www.penko.com

Certifications

PENKO sets high standards for its products and product performance which are tested, certified and approved by independent expert and government organizations to ensure they meet – and even – exceed metrology industry guidelines. A library of testing certificates is available for reference on:

www.penko.com/nl/publications_certificates.html

PENKO Professional Services

PENKO is committed to ensuring every system is installed, tested, programmed, commissioned and operational to client specifications. Our engineers, at our weighing center in Ede, Netherlands, as well as our distributors around the world, strive to solve most weighing-system issues within the same day. On a monthly basis PENKO offers free training classes to anyone interested in exploring modern, high-speed weighing instruments and solutions. Training sessions on request: www.penko.com/training

PENKO Distributor

A complete overview you will find on: www.penko.com/Find-A-Dealer

